

500 κBA

ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ

Электромеханический стабилизатор напряжения компенсационного типа

Электромеханический стабилизатор напряжения компенсационного типа \$78700

Содержание

Νō	РАЗДЕЛ	CTP	Νō	РАЗДЕЛ	CTP
1.	Введение.	1	7.	Упаковка.	12
2.	Назначение.	1	8.	Техническое обслуживание.	12
3.	Технические характеристики.	1	9.	Обеспечение требований безопасности.	12
4.	Состав изделия, элементы управления и индикации.	5	10.	Требования к транспортировке и хранению.	13
5.	Устройство и работа изделия.	10	11.	Комплектность.	14
6.	Средства измерения и индикации.	12	12.	Сроки службы и хранения. Гарантии изготовителя.	14

1. Введение

Внимание! Подключение изделия может производиться только высококвалифицированным персоналом, имеющим третью группу электробезопасности с допуском

Подключение алюминиевых проводников производится только с использованием специальных кабельных наконечников или после нанесения на предварительно зачищенный от оксидной пленки проводник проводящей противокоррозионной смазки типа «СУПЕРКОНТ» или аналогичной.

С периодичностью 6-8 недель после установки производить проверку надежности затягивания и дополнительное протягивание (при необходимости) всех электрических резьбовых зажимов внешних подключений. Комплексное техническое обслуживание и ремонт должны производиться квалифицированным персоналом. Установка и эксплуатация изделия допускаются только после изучения руководства по эксплуатации. Особое внимание следует уделить разделу 10: «Обеспечение требований безопасности»,

2. Назначение

Электромеханический стабилизатор напряжения компенсационного типа серии SBW-F (в дальнейшем стабилизатор) трехфазный предназначен для обеспечения потребителей стабилизированным переменным напряжением У/Д 220/380В, 50-60Гц в сетях с длительными отклонениями входного напряжения в диапазоне 176-264В (304-456В) фазного (линейного) значения. При изменении напряжения во внешней питающей сети стабилизатор поддерживает на своем выходе заданную величину напряжения.

Внимание! Использование стабилизатора в производственных средах с повышенной опасностью категорически запрещено.

3. Технические характеристики

3.1. Изделие соответствует требованиям российских и международных стандартов. Технические условия и нормативная база на изделие устанавливаются стандартом предприятия SCT/008-2009 и приведены в Таблице 1.

SIBUU Электромеханический стабилизатор напряжения компенсационного типа

Основные параметры стабилизаторов напряжения SBW

Таблица 1

1. Номинальное выходное фазное (линейное) напряжение, В	Υ/Δ 220/380+-3%
2. Число фаз	3
3. Номинальная частота переменного тока, Гц	50, 60
4. Максимальная полная мощность нагрузки в диапазоне входного напряжения, кВА	500
5. Допускаемая кратковременная перегрузка в течение 10 минут, не более, %	10
6. Диапазон входного фазного напряжения (линейного), В	Υ/Δ 176264/305457
7. Скорость регулирования (не более), мс/В	≤20
8. Коэффициент полезного действия (не менее),%	98
9. Индикация	Кнопки "ПУСК" и "СТОП" с подсветкой, индикатор работы каждой фазы во входной и выходной цепях, индикатор режима "БАЙПАС", вольтметры напряжения входной и выходной цепей, амперметры индикации силы тока фазного значения выходной цепи для каждой фазы.
10. Габариты и вес	по запросу
11. Способ охлаждения силовых узлов	Воздушное конвекционное, принудительное вентиляторное
12. Способ подключения	Клеммная колодка
13. Тип заземления по ПУЭ	Входная цепь - TN Выходная цепь - TN
14. Внешние средства защиты от косвенного прикосновения	УЗО (не поставляется в комплекте)
15. Режим работы	непрерывный
16. Принцип работы	автотрансформаторный щеточно-контактный сервоприводный
17. Функции защиты	
Защита от повышенного напряжения, откл. при	250В фазного напряжения
Защита от пониженного напряжения, откл. при	150В фазного напряжения
Защита от несимметрии, обрыва фазного и нулевого провода	реле контроля фаз
Защита от перегрузки по току	автоматический выключатель
Задрежка включения выходного напряжения,с	5
18. Степень защиты от внешних воздействий	IP20

Электромеханический стабилизатор напряжения компенсационного типа 578/1/1/1

19. Условия эксплуатации	
температура эксплуатации	-10°C + 40°C
относительная влажность воздуха	< 90%.
	Климатическое исполнение и категория размещения УХЛЗ в соответствии с ГОСТ 15150-69 и ГОСТ 15543-70

Таблица 1

- 3.2. Диапазон входного напряжения определяется с учетом зависимости выходного напряжения от входного (Рис. 1) в соответствии с требованиями пользователя к величине выходного напряжения.
- 3.3. Общая полная мощность подключаемых к выходной цепи стабилизатора потребителей электроэнергии определяется с учетом зависимости максимальной полной выходной мощности от входного напряжения (Рис. 2) и определенного по пп. 3.2 диапазона входного напряжения.
- 3.4. Динамика и амплитуда бросков входного напряжения электросети во времени должны соответствовать величине скорости регулирования выходного напряжения стабилизатора (пп. 7 Таблицы 1).

Внимание! Не выполнение требования п 3.4 может привести к появлению дополнительных к уже имеющимся в сети факторам нестабильности, а также к преждевременному износу контактных элементов регулирующего силового трансформатора прибора.

Рис. 1

Внимание! Постоянное наличие или достаточно регулярное появление в сети электропитания стационарных бросков амплитуды напряжения относительно номинального значения 220В фазного напряжения, приводящих к нестабильной работе потребителей как со стабилизатором данного типа (п. 16 Таблицы 1), так и без него, указывает на необходимость устранения данного дефекта сети средствами эксплуатационных служб организации- поставщика электроэнергии с целью приведения ее состояния в соответствие требованиям действующих нормативных документов. А в случае невозможности или затрудненности вышеуказанной меры рекомендуется применять быстродействующие системы стабилизации с возможностью «горячего» ввода резервного электропитания такие как, например, инверторы со встроенным релейным стабилизатором напряжения, оснащенные внешними аккумуляторными батареями большой емкости.

SBM Электромеханический стабилизатор напряжения компенсационного типа

3.5. Меры общей, пожарной и электрической безопасности для сети электропитания, оснащенной стабилизатором, следует осуществлять строго на основании требований ПУЭ, а также сведений и указаний данной инструкции по эксплуатации. Диапазон входного напряжения определяется с учетом зависимости выходного напряжения от входного (Рис. 1) в соответствии с требованиями пользователя к величине выходного напряжения.

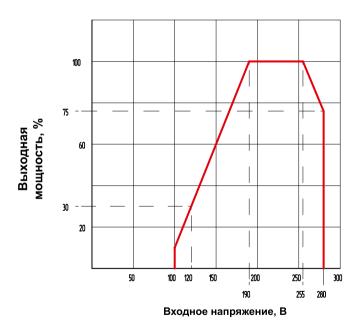


Рис.2

Внимание! Изделие относится к классу вторичных источников электропитания, не обеспечивающих гальваническую развязку цепей потребителей с электрической сетью.

4.Состав изделия, элементы управления и индикации

Схематический внешний вид основного блока 13

Вид спереди

Вид сбоку

Вид сзади

Рис. 3

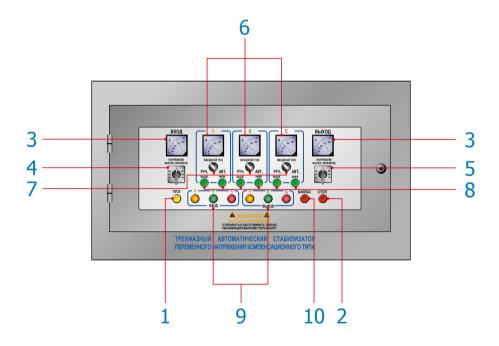
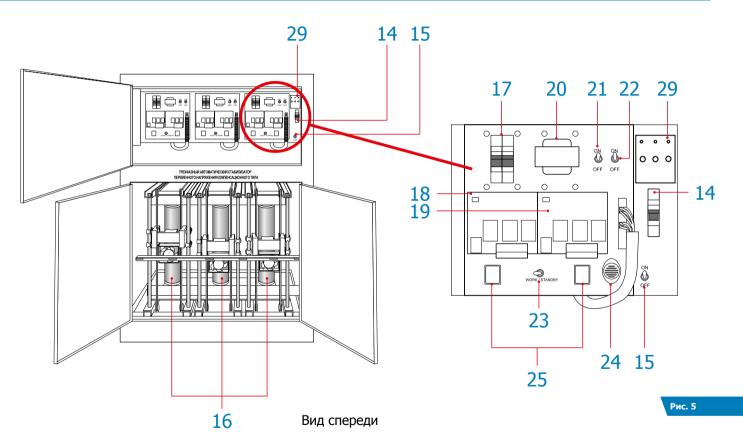



Рис.4

Лицевая панель

SIBUU Электромеханический стабилизатор напряжения компенсационного типа

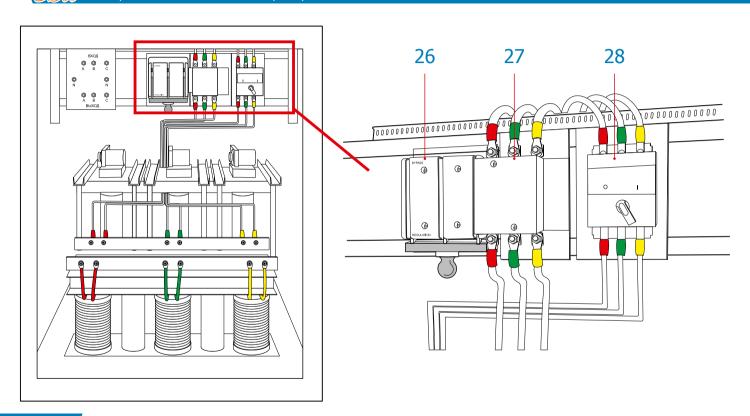


Рис.6 Вид сзади

Электромеханический стабилизатор напряжения компенсационного типа

Таблица 2

Поз.	Наименование	Назначение
1	Кнопка "ПУСК"	Включение входного напряжения стабилизатора
2	Кнопка "СТОП"	Отключение входного напряжения стабилизатора
3	Вольтметры входной и выходной цепей	Измерение напряжения входной и выходной цепей (фазного и линейного значений)
4	Переключатель вольтметра входной цепи	Переключение вольтметра для измерения линейного (AB, BC,AC) или фазного (AN,BN,CN) напряжения во входной цепи
5	Переключатель вольтметра выходной цепи	Переключение вольтметра для измерения линейного (АВ, ВС,АС) или фазного (AN,BN,CN) напряжения в выходной цепи
6	Амперметры цепи нагрузки	Измерение фазного значения силы тока в фазах А, В, С цепи нагрузки
7	Переключатель "Ручной/Автоматический"	Переключение режимов работы в каждой из фаз - "ручной" (рычаг влево) и "автоматический" (рычаг вправо)
8	Кнопка "ВЫШЕ", "НИЖЕ"	Повышение или понижение напряжения в режиме ручной регулировки
9	Индикаторы работы входной и выходной цепей	Индикация наличия напряжения во входной и выходной цепях
10	Индикатор режима "БАЙПАС"	Индикация работы стабилизатора в режиме "БАЙПАС"
11	Трансформаторы тока	Преобразование силы тока измерительный сигнал напряжения
12	Клеммная колодка	Подключение кабелей входной и выходной цепей
13	Отверстие для ввода кабелей	Прокладка кабелей питания и нагрузки внутрь корпуса стабилизатора
14	Автоматический выключатель цепи тепловой защиты	Контроль тепловой защиты (питание вентилятора)
15	Тумблер включения-отключения питания цепи контактора	Включение или отключение цепи контактора (сервисный режим)
16	Регулировочные трансформаторы	Регулирование выходного напряжения
17	Автоматический выключатель цепи платы управления	Переключение плат управления (основная-резервная) без отключения нагрузки
18	Рабочая (основная) плата управления	Контроль напряжения и управление серводвигателем
19	Резервная плата управления	Используется при выходе из строя основной платы упраления
20	Понижающий трансформатор напряжения питания платы управления	Питание платы управления
21	Тумблер вклоткл защиты от пониженного напряжения	Включение-отключение защиты от аномального напряжения
22	Тумблер включения-отключения звукового сигнала	Включение или отключение звукового сигнала
23	Тумблер переключения плат управления	Переключение плат управления (основная - резервная) (только при отключении сети или автомата поз.17)

STEW Электромеханический стабилизатор напряжения компенсационного типа

Таблица 2

7	24	24 Зуммер Сигнализация аварийных ситуаций (повышенное напряжение, пониженное напряжение, обрыв фазы)	
25 Управляющее реле Осуществление коммутаций в цепи серводвигателя		Осуществление коммутаций в цепи серводвигателя	
	26 Рубильник переключения режимов "СЕТЬ- БАЙПАС" и наоборот		Переключение с режима "СЕТЬ" на режим "БАЙПАС" и наоборот
	27 Контактор силовой цепи с блоком дополнительных контактов Включение/отключение силовой цепи		Включение/отключение силовой цепи
	28	Автоматический выключатель силовой цепи с сервоприводом	Защита силовой цепи стабилизатора от перегрузки по току и короткого замыкания включение и отключение входного напряжения кнопкой "ПУСК" поз. 1 рис. 4 .
	29	Реле контроля фаз	Контроль напряжения и защита от обрыва нулевого провода

5. Устройство и работа изделия

5.1. Устройство и конструктивные особенности

- 5.1.1. Изделие относится к классу автотрансформаторных стабилизаторов с сервоприводным регулированием.
- 5.1.2. Выходное фазное напряжение стабилизатора автоматически поддерживается в диапазоне 2208±3% (линейное 380±3%), что соответствует требованиям на предельно допустимые значения отклонения напряжения электропитания ГОСТ 13109-97 "Нормы качества электрической энергии в системах электроснабжения".

Внимание! Мгновенные скачки входного напряжения могут приводить к частым защитным отключениям нагрузки из-за ограниченной величины скорости регулирования выходного напряжения с помощью электромеханического привода шеточно-контактного узла.

- 5.1.3. Стабилизатор представляет собой три соединенные по схеме типа "звезда" (Y) однофазных стабилизатора в общем корпусе с объединенной системой защиты. Система управления каждого из трех составляющих изделие стабилизаторов выполняет функцию стабилизации величины фазного напряжения для каждой фазы отдельно.
- 5.1.4. Стабилизатор оснащен системой контроля фаз только по напряжению, которая производит защитное отключение нагрузки при аномальном входном или выходном напряжении хотя бы одной из фаз.
- 5.1.5. Сервопривод имеет два режима управления ручной и автоматический, который может быть выбран с помощью переключателя "ручной/автоматический". В режиме ручной регулировки для повышения или понижения напряжения нужно нажать кнопку "выше" или "ниже".

5.2. Внешний осмотр и монтаж стабилизатора

Внимание! К работе со стабилизатором допускается только высококвалифицированный персонал, имеющий третью группу электробезопасности с допуском до 1000В.

Внимание! Перед подачей электроэнергии произвести внешний осмотр!

- **5.2.1.** Внешний осмотр:
- не должно быть механических и иных повреждений корпуса. Все элементы стабилизатора должны быть надежно закреплены;
- направляющие планки и токоведущие части не должны быть загрязнены и окислены;
- напряжение источника питания должно соответствовать паспортным характеристикам;
- электрощетки должны быть в направляющей планке и не иметь повреждений.

Электромеханический стабилизатор напряжения компенсационного типа

- 5.2.2. Монтаж (производится авторизованным сервисным центром, оформляется акт с отметкой о вводе в эксплуатацию в паспорте п.15):
- пропустить провод от источника питания через специальное отверстие в корпусе;
- питающий кабель соединить с клеммой "Вход";
- кабель нагрузки соединить с клеммой "Выход".

5.3. Проверка и регулировка стабилизатора

- 5.3.1. Перед подачей напряжения рычаги управления должны находиться в следующем положении:
- Автоматический выключатель силовой цепи (28) в режиме "I":
- Рубильник для переключения режимов "Сеть-Байпас" (26) в режиме "Сеть";
- Тумблер включения-отключения питания цепи контактора (15) в режиме "ON";
- Тумблер включения-отключения защиты от пониженного напряжения (21) в режиме "ОN";
- Тумблер включения отключения звукового сигнала (22) в режиме "ON";
- Тумблер переключения плат управления (23) в режиме "Work";
- 5.3.2. Проверка и регулировка:
- сначала следует при отключенной нагрузке проверить еще раз правильность соединения и состояние каждого из элементов стабилизатора;
- подать напряжение на питающий кабель, включить входной автомат и нажать кнопку "Стоп". Затем переключатель "Ручной/Автоматический" перевести в положение "Ручной" и нажать кнопку "Пуск". Увеличение или уменьшение напряжения на выходе стибилизатора производится нажатием на кнопки "Выше" или "Ниже".
- когда переключатель (7) находится в положении "Автоматический", то на выходе стабилизатора напряжение автоматически поддерживатеся в заданном диапазоне. При пропадании питающего напряжения стабилизатор выключается, а при появлении его вновь включается автоматически примерно через 5 секунд.

5.4. Порядок работы в автоматическом режиме стабилизации

- 5.4.1. Убедиться, что рычаги управления стабилизации находятся в положениях, описанных в пункте 5.3.1., а переключатели (7) установить в положение "Автоматический".
- 5.4.2. Подать напряжение на входные клеммы, при этом индикаторы (9) (входного напряжения) загорятся. После автоматической установки нормального выходного напряжения (контролируется вольтметром выходного напряжения (3)) произойдет автоматическое включение напряжения выходной цепи нагрузки в течение времени не более 10 секунд.

5.5. Порядок работы в режиме включения обходной цепи "БАЙПАС"

- 5.5.1. Перед началом работы убедитесь что рубильник для переключения режимов СЕТЬ-БАЙПАС (26) установлен в положение "БАЙПАС". Не рекомендуется менять положение данного рубильника в процессе эксплуатации.
- 5.5.2. Для включения режима "БАЙПАС" в рабочем режиме необходимо нажать кнопку "СТОП", а затем кнопну "БАЙПАС".
- 5.5.3. Для переключения режима "БАЙПАС" на режим "СЕТЬ" необходимо нажать кнопку "СТОП", а затем "ПУСК".

Внимание! В данном режиме не допускается подключение потребителей, чувствительных к появлению аномального напряжения или способных перегрузить выходную цепь.

5.6. Порядок эксплуатации при пониженной температуре

В случае хранения стабилизатора при температуре окружающей среды ниже -5°C следует перед включением выдержать его в теплом сухом помещении в течение времени, необходимого для прогрева всех его частей (не менее 2-х часов при комнатной температуре). После перемещения прогретого стабилизатора в холодную среду необходимо наземедлительно обеспечить постоянное подключение его к выходной цепи нагрузки не менее 20% от его максимальной мощности.

Внимание! Эксплуатация при температурах окружающей среды ниже допустимых пределов может привести к неудовлетворительной работе и преждевременному отказу изделия.

6. Средства измерения и индикации

- 6.1. Вольтметр входной и выходной цепей.
- 6.2. Амперметры цепи нагрузки.
- 6.3. Переключатель вольтметра входной и выходной цепей. Позволяет измерять как линейное (положение AB, BC, AC) так и фазное (положение AN, BN, CN).
- 6.4. Световая индикация режимов работы и наличия фаз (Таблица 2, рис. 4).

7. Упаковка

- 7.1. Упаковка имеет средства защиты против попадания на изделие пыли и посторонних мелких частиц.
- 7.2. Упаковочный материал обладает достаточной для погрузки и транспортировки прочностью. Упаковка предусматривает средства защиты от вибрации, пыли и влажности воздуха до 102% без конденсации влаги.
- 7.3. Комплект документации, помещаемый внутри упаковки с изделием или передаваемый покупателю (заказчику) отдельно, должен содержать:
- отметку технического контроля;
- инструкцию;
- комплектную ведомость.
- 7.4. Упаковочная маркировка и предупредительные надписи соответствуют ISO 780-1997.

8. Техническое обслуживание.

Внимание! К осблуживанию стабилизатора допускается только высококвалифицированный персонал с третьей группой допуска, прошедший специальную подготовку. 8.1. Рекомендуется проведение профилактических периодических работ не реже одного раза в 12 месяцев, проверок и технического обслуживания изделия в условиях специализированных

- авторизованных Продавцов в сервисных центрах.

 8.2. Стабилизатор может длительно работать при указанных в настоящем руководстве условиях эксплуатации без обслуживания, но не реже одного раза в полгода необходимо привлекать авторизованный сервисный центр для проведения следующих процедур:
- все части стабилизатора должны быть очищены от пыли, грязи, следов коррозии, особенно токоведущие части и щетки. Следует использовать уайт-спирит или бензин марки КАОШ, а также одноразовые салфетки:
- заменить изношенные или поврежденные детали;
- смазать моторным маслом направляющие и цепь (если необходимо):
- проверить и отрегулировать зазоры и люфты в механизмах привода щеток, натяжение цепи.
- 8.3. При отсутствии возможности самостоятельно устранить любые дефекты, необходимо обратиться за помощью в сервисный центр, авторизованный организацией-продавцом,

9. Обеспечение требований безопасности

Внимание! Изделие является источником повышенной общей, пожарной и электрической опасности.

9.1. Обеспечение общих требований безопасности и нормального функционирования

9.1.1. Суммарная полная мощность всех подключаемых к стабилизатору потребителей не должна превышать 100% номинальной мощности прибора, только если входное фазное напряжение находится в пределах от 190В до 255В (см.рис.2). При возможном изменении входного фазного напряжения в пределах от 130В до 290В суммарная полная мощность всех подключаемых к стабилизатору потребителей не должна превышать величины, отображенной на графике рис.2 Невыполнение данного требования может привести к частому нежелательному срабатыванию средств защиты от перегрузки стабилизатора с отключением потребителей электроэнергии, а также сокращению срока службы изделия и его преждевременному выходу из строя.

Электромеханический стабилизатор напряжения компенсационного типа

- 9.1.2. Стабилизатор должен быть установлен в закрытых сухих и теплых помещениях в месте, где предусмотрена защиты от аномальной температуры, воздействия прямого солнечного света и других ненормальных внешних условий (см. Таблицу 1,пп. 19.). Не допускается эксплуатация в условиях повышенной запыленности и хранение без заводской или аналогичной упаковки.
- 9.1.3. В качестве опоры для установки следует использовать любую твердую неподвижную горизонтальную поверхность. При установке необходимо обеспечить наличие свободного пространства не менее 1 м с каждой стороны корпуса стабилизатора для свободной циркуляции воздуха и исключения теплопередачи от стабилизатора к окружающим предметам. Исключить возможность попадания любых предметов или загоязнений на вентиляционные отверстия системы охлаждения корпуса стабилизатора.
- 9.1.4. Параметры окружающей среды должны удовлетворять установленным п.19 (Таблица 1) нормам.
- 9.1.5. Следует исключить доступ к изделию со стороны детей и посторонних лиц, а также людей, не знакомых с правилами эксплуатации и безопасности.
- 9.1.6. Не ремонтировать неисправный стабилизатор самостоятельно.

9.2. Обеспечение требований пожарной безопасности

- 9.2.1. Исключить появление вблизи стабилизатора источников пламени и тлеющего горения. Не курить около изделия!
- 9.2.2. Не хранить вблизи изделия взрывоопасные, легковоспламеняющиеся и горючие материалы.
- 9.2.3. Не размещать и не эксплуатировать стабилизатор во взрывоопасной среде.
- 9.2.4. Обеспечить оперативную доступность первичных средств пожаротушения около места установки.

9.3. Обеспечение требований электробезопасности

- 9.3.1. Изделие относится к вторичным источникам питания электроэнергией. Электрическая сеть подключения потребителей для данной модели относится к системе с глухозаземленной нейтралью (TN), предусматривающей защитное заземление открытых электропроводящих частей корпуса.
- 9.3.2. Защитное заземление должно иметь сопротивление не более 4-х Ом. Практически это требование может быть реализовано в соответствии с ПУЭ или следующими способами:
- подключение к помещенным во влажные слои грунта предметам из оцинкованной стали, стали без покрытия или меди, размеры которых могут быть: стержень диаметром 15мм и длиной 1,5м, лист 1х1,5м,
- подключение к находящимся в земле объектам, кроме трубопроводных горючих и взрывоопасных сред, центрального отопления и канализации,
- подключение к существующему контуру защитного заземления отдельным защитным проводником.
- 9.3.3. Конструкция стабилизатора предусматривает подключение к сетям с глухозаземленной нейтралью, используемым для стационарных электроустановок.
- 9.3.4. Подключаемые потребители должны иметь:
- внешний проводник защитного заземления или проводящий в кабеле подключения, при наличии открытых электропроводящих частей корпуса (лакокрасочное покрытие не является электрической изоляцией),
- двойную изоляцию всех частей проводящего корпуса при отсутствии проводника заземления в кабеле подключения или клеммы заземления на корпусе,
- собственный заземляющий проводник, независимо подключенный к существующему заземлителю, при наличии открытых электропроводящих частей корпуса и отсутствии проводника заземления в кабеле подключения.
- 9.3.5. Все модели, оснащенные клеммными колодками для внешних подключений, должны быть подключены в соответствии с маркировкой на корпусе изделия для каждой из клемм подключения в отдельности, а также для входных и выходных групп клемм.

10. Требования к транспортировке и хранению

10.1. Транспортировка

При погрузке и транспортировке следует полностью исключить возможность механических повреждений и самопроизвольных перемещений изделий, положение упаковки должно соответствовать предупредительным обозначениям.

STEMM Электромеханический стабилизатор напряжения компенсационного типа

10.2. Хранение

10.2.1. Хранение изделия допускается в любом чистом, сухом помещении при условии предотвращения возможности попадания на изделие агрессивной среды и прямого солнечного света, температуре воздуха от -40 С до +50 С и влажности воздуха до 98 % без конденсата. Изделие должно храниться в заводской и аналогичной упаковке. 10.2.2. Гарантийный срок хранения не менее 24-х месяцев при соблюдении условий хранения и транспортировки.

11. Комплектность

Наименование	Количество, ед.
Стабилизатор напряжения компенсационного типа SBW-F	1
Инструкция по эксплуатации	1

12. Срок службы и хранения. Гарантии изготовителя.

- 12.1. Назначенный срок службы изделия 10 лет.
- 12.2. Гарантийный срок эксплуатации изделия устанавливается в размере 12-ти календарных месяцев со дня продажи.
- 12.3. Служба тех.поддержки: Москва и Московская область тел. (495) 508-5607. Информацию по вопросам сервисного обслуживания в других регионах Вы можете узнать на нашем сайте www.энергия.рф.

Электромеханический стабилизатор напряжения компенсационного типа **SBM**

Для Заметок		

Для заметок	

