

РУКОВОДСТВО по ЭКСПЛУАТАЦИИ, ПАСПОРТ УСТРОЙСТВО ПЛАВНОГО ПУСКА серии SSI и SBI

СОДЕРЖАНИЕ

Указания по безопасности	1
1. Общие сведения об устройствах плавного пуска серии SSI	2
1.1 Основные функции	2
1.2 Технические характеристики	2
2. Обозначение и проверка перед применением	4
3. Условия эксплуатации и требования к монтажу	5
3.1 Характеристики и требования к условиям эксплуатации	5
3.2 Требования к установке	6
3.3 Электрический монтаж	6
3.4 Габаритные и установочные размеры	8
4. Внешние соединения	10
4. Клеммы управления	11
4.2 Схемы подключения	12
5. Панель управления и ее применение	14
5.1 Применение панели и настройка параметров	14
5.2 Пояснения к установке параметров	16
5.3 Функции программируемого выходного реле	19
5.4 Режимы управления	20
5.5 Информационное меню	20
5.6 Метод проверки функционирования УПП без электродвигателя	21
5.7 Автоматический перезапуск	21
6. Функции защиты и их применение	22
6.1 Параметры функций защиты	22
6.2 Классы защиты и их описания	23
7. Тестовый запуск и применение	25
7.1 Подключение питания и подготовка к запуску	25
7.2 Режим запуска и их применение	27
7.3 Режим плавного останова и его применение	29
7.4 Специальное применение	30
8. Коммуникационный протокол MODBUS RTU	30
8.1 Интерфейс обмена данными	30
ПАСПОРТ НА ОБОРУЛОВАНИЕ	

УКАЗАНИЯ ПО БЕЗОПАСНОСТИ

При применении устройств плавного пуска необходимо соблюдение следующих мер предосторожности:

- До начала применения, пожалуйста, внимательно ознакомьтесь с настоящей инструкцией.
- К работе по установке и эксплуатации устройства должен допускаться только квалифицированный и обученный персонал.
- Убедитесь в том, что параметры устройства соответствуют параметрам электродвигателя.
- Запрещается подключение емкостной нагрузки к выходным клеммам (U V W).
- После подключения места силовых соединений должны быть заизолированы.
- При выполнении ремонтных и профилактических работ устройство должно быть отключено от сети и электродвигателя.
- Устройство плавного пуска не может быть использовано как разъединитель цепи или изолирующее устройство.
- Для предотвращения случайных запусков, устройство плавного пуска необходимо подключать через прерывающее устройство (например, контактор), управляемое внешней системой безопасности (аварийного останова).
- Не допускается попадание влаги внутрь устройства.
- Запрещено использовать устройство плавного пуска совместно с конденсаторными установками

ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Изготовитель обеспечивает гарантийный ремонт устройства плавного пуска в течение гарантийного срока, указанного в паспорте изделия.

1. ОБЩИЕ СВЕДЕНИЯ ОБ УСТРОЙСТВАХ ПЛАВНОГО ПУСКА СЕРИИ SSI. SBI

Применение устройств плавного пуска оправдано только в механизмах работающих с постоянной частотой вращения вала электродвигателя, но имеющие тяжелые режимы пуска.

Устройства плавного пуска серии SSI и SBI спроектированны на базе микропроцессора и предназначены для плавного пуска и останова трехфазного электродвигателя с короткозамкнутым ротором.

1.1 ОСНОВНЫЕ ФУНКЦИИ

Устройства плавного пуска серии SSI в стандартной комплектации имеет следующий набор функций:

- Релейный выход для управления внешним обводным контактором
- Использование тиристоров в фазах L1, L2, L3 для управления напряжением
 - Выбор между линейным изменением напряжением и ограничением по току
 - Автоматический перезапуск при возникновении ошибки или сбое питания
 - Встроенный сетевой протокол Modbus RTU

Устройство плавного пуска серии SBI в стандартной комплектации имеет следующий набор функций:

- Встроенные внутри корпуса обводные реле
- Использование тиристоров в фазах L1, L2, L3 для управления напряжением
- Выбор между линейным изменением напряжением и ограничением по току
- Автоматический перезапуск при возникновении ошибки или сбое питания
- Встроенный сетевой протокол Modbus RTU

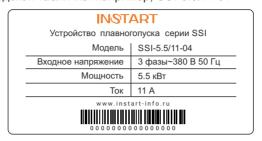
Управление устройством плавного пуска осуществляется тремя способами:

- Местное (с панели управления)
- Через дискретные входа
- Через интерфейс связи Modbus RTU

При подборе устройство плавного пуска следует учитывать:

- Рабочее напряжение
- Управляющее напряжение
- Номинальные характеристики электродвигателя

Устройства плавного пуска не применимы в тех механизмах, где требуется регулировать скорость вращения вала электродвигателя и где необходимо поддерживать технологические параметры.


Момент электродвигателя имеет квадратичную зависимость от напряжения, таким образом пуск электродвигателя не произойдет до тех пор пока момент нагрузки не станет меньше момента создаваемого электродвигателем.

1.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Напражение питания и SSI		380 B ± 15%, 3 фазы; 5.5 - 600 кВт				
Напряжение питания и диапазон мощностей	SBI	380 B±15%, 3 фазы; 5.5 - 55 кВт				
Частота электропитания		50/60 Гц				
Применяемые электроде		Трехфазные асинхронные с короткозамкнутым ротором				
Частота пусков		Не более 20 раз в час				
Пусковое напряжение		30 - 70%				
Ограничение пускового	тока	50 - 500%				
Время пуска		2 - 60 c				
Время останова		0 - 60 c				
Максимальные рабочий	ток	50 - 200 %				
Режим пуска		Режим ограничения тока Режим рампы по напряжению Запуск рывком в режиме ограничения тока Запуск рывком в режиме рампы по напряжению Режим рампы по току Режим двойного контура регулирования с ограничением тока и напряжения				
Режимы останова		1. Режим плавного останова 2. Режим свободного останова				
Наличие обводного	SSI	Отсутствует (необходимо использовать внешний контактор)				
контактора (байпас)	SBI	Встроен				
Релейные выходы		Программируемый выход с задержкой, выход ошибки, управление обводным контактором				
Входы управления		пуск, стоп, аварийный стоп				
Аналоговый выход		020 мА, мониторинг действующего тока двигателя				
Обмен данными		Поддержка стандартного протокола MODBUS RTU				
Функции защиты		1. Защита от перегрева устройства плавного пуска 2. Защита от обрыва входной фазы 3. Защита от обрыва выходной фазы 4. Защита от перекоса фаз 5. Токовая защита при запуске 6. Защита от перегрузки в процессе работы двигателя 7. Защита от пониженного напряжения 8. Защита от повышенного напряжения 9. Защита от короткого замыкания нагрузки 10. Защита от длительного пуска 11. Защита от установки неверных параметров 12. Защита от неверного подключения				
Степень защиты	SSI	IP20 модели от 5.5 кВт по 75 кВт IP00 модели от 90 кВт по 600 кВт IP20				
Внешние условия		Размещение на высоте до 1000 м. При размещении выше 1000 м - спедует использовать устройство большей мощности. Температура окружающего воздуха - в интервале - 30+55° С, влажность воздуха - не более 90%, без конденсата. Размещение устройства - в помещении с хорошей вентиляцией, при отсутствии коррозионно- активных веществ и электропроводящей пыли. Вибрации не должны превышать 0.5 G				
Система охлаждения		Естественное охлаждение воздухом				

2. ОБОЗНАЧЕНИЕ И ПРОВЕРКА ПЕРЕД ПРИМЕНЕНИЕМ

Пожалуйста, проверьте устройство до применения на предмет отсутствия внешних повреждений и соответствия обозначения устройства вашему заказу. Надпись на заводской табличке: например, SSI-5.5/11-04

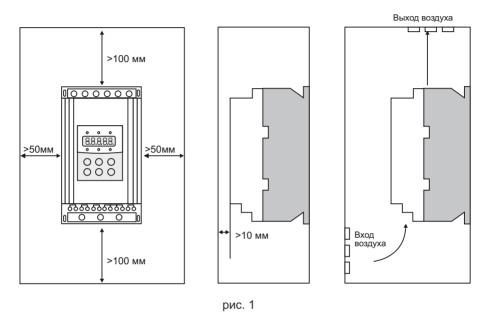
Система обозначения:

- 1 Серия: SSI, SBI
- 2 Мощность (кВт)
- 3 Ток (A)
- 4 Номинальное напряжение (380 В)
- 5 Дополнительное защитное покрытие плат лаком
- 6 Защитное покрытие плат компаундом

ВНЕШНИЙ ВИД УСТРОЙСТВ ПЛАВНОГО ПУСКА серии SSI и SBI мощностью от 5.5 до 75 кВт

ВНЕШНИЙ ВИД УСТРОЙСТВ ПЛАВНОГО ПУСКА серии SSI мощностью от 90 кВт и выше

3. УСЛОВИЯ ЭКСПЛУАТАЦИИ И ТРЕБОВАНИЯ К МОНТАЖУ

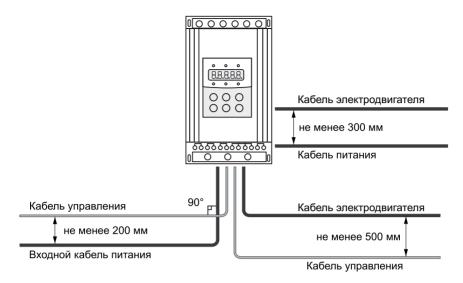

Для нормальной работы устройства необходимо неукоснительно выполнять требования, изложенные ниже.

3.1 ХАРАКТЕРИСТИКИ И ТРЕБОВАНИЯ К УСЛОВИЯМ ЭКСПЛУАТАЦИИ

Электроснабжение	Центральное или автономное, 3 фазы ~380В ±15% с частотой 50 или 60 Гц. Мощность и ток устройства плавного пуска должны соответствовать характеристикам подключаемого электродвигателя
Электродвигатель	К устройству может быть подключен трехфазный асинхронный электродвигатель с короткозамкнутым ротором соответствующей мощности
Время разгона	Устанавливается в зависимости от характера подключаемой нагрузки
Способ охлаждения	Устественное охлаждение воздухом
Степень защиты	IP20
Внешние условия	При размещении на высоте до 1000 м над уровнем моря температура окружающего воздуха должна быть в интервале -35+55°С, влажность воздуха - не более 90%. В воздухе должен отсутствовать пар, горючие газы, летучие взвеси, коррозионно-активные вещества, электропроводящая пыль. Установка устройства должна выполняться внутри помещений или защитных оболочек. Вибрации не должны превышать 0.5G.

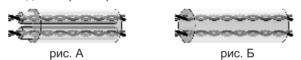
3 2 ТРЕБОВАНИЯ К УСТАНОВКЕ

- Размещение устройства: для обеспечения нормальных условий эксплуатации, пожалуйста, монтируйте устройство в вертикальном положении с обеспечением необходимых зазоров вокруг устройства (см. рис. 1).
- При монтаже в оболочку, убедитесь в обеспечении хорошей вентиляции для достаточного теплоотвода (см. рис. 1).



3.3 ЭЛЕКТРИЧЕСКИЙ МОНТАЖ

Прокладка кабелей. Общие правила

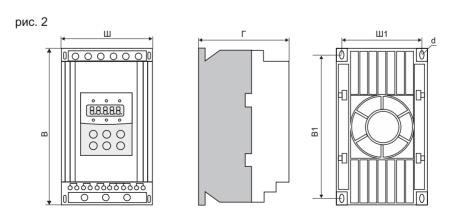

Кабель электродвигателя следует прокладывать на расстоянии от остальных кабелей. Кабели электродвигателей нескольких приводов можно укладывать параллельно и рядом друг с другом. Кабель электродвигателя, кабель питания и кабели управления рекомендуется прокладывать в разных кабельных лотках. В целях снижения уровня электромагнитных помех, вызванных импульсным характером выходного напряжения привода, не следует прокладывать кабель двигателя параллельно другим кабелям на протяженных участках.

Пересечение кабелей управления и силовых кабелей следует выполнять под углом, как можно более близким к 90°. Не допускается прокладка посторонних кабелей через привод. Кабельные лотки должны иметь хорошую электрическую связь друг с другом и с проводниками заземления. Для улучшения выравнивания потенциала можно использовать системы алюминиевых кабельных лотков.

Выбор кабелей управления. Экранирование

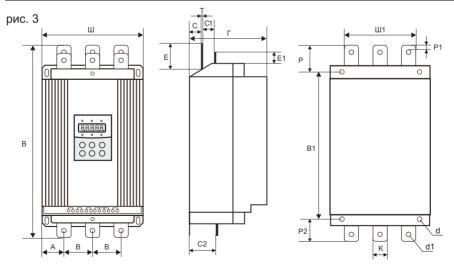
Все кабели управления должны быть экранированными. Для аналоговых сигналов следует использовать кабель типа «витая пара» с двойным экраном (см. рис. «А» ниже). Каждый сигнал должен быть подключен с помощью отдельной экранированной пары. Не следует использовать один общий провод для разных аналоговых сигналов. Для низковольтных цифровых сигналов лучше всего подходит кабель с двойным экраном, однако можно использовать и кабель типа «витая пара» с одним экраном рис. «Б».

Подключение на шину RS485. Рекомендации по подключению


- Используйте экранированный кабель, содержащий две витые пары.
- Соедините соответствующие потенциалы (0B).
- Максимальная длина линии: 500 метров.
- Максимальная длина ответвления: 20 метров.
- Прокладка кабелей: прокладывайте сетевой кабель отдельно от силовых кабелей (по крайней мере, на расстоянии 30 см); если необходимо, выполняйте пересечения под прямыми углами; подключайте экран кабеля к клемме заземления каждого подключаемого прибора.
- Подключите терминаторы линии к каждому из двух концов линии

Кабель панели управления

Длина кабеля от привода до панели управления не должна превышать 3 м.


3.4 ГАБАРИТНЫЕ И УСТАНОВОЧНЫЕ РАЗМЕРЫ Габаритные и установочные размеры устройств плавного пуска серий SSI и SBI мощностью от 5.5 кВт до 55 кВт

Manage	Мощность,	Ток,	Габ	ариты,	MM	Установо	чные разі	иеры, мм	Масса нетто,
Модель	кВт*	Α	Ш	В	Γ	Ш1	B1	d	кг
SSI-5.5/11-04	5.5	11	146	270	160	132	248	M7	<5
SBI-5.5/11-04	5.5	11	140	210	100	132	240	IVI7	,,
SSI-7.5/15-04	7.5	15	146	270	160	132	248	M7	<5
SBI-7.5/15-04	7.5	15	140	270	100	132	240	IVI /	\3
SSI-11/23-04	11	23	146	270	160	132	248	M7	<5
SBI-11/23-04	11	23	140	210	100	132	240	IVI7	
SSI-15/30-04	15	30	146	270	160	132	248	M7	<5
SBI-15/30-04	15	30	140	270	100	132	240	IVI7	\0
SSI-18.5/37-04	18.5	37	146	270	160	132	248	M7	<5
SBI-18.5/37-04	10.5	31	140	210	100	132	240	IVI7	,5
SSI-22/43-04	22	43	146	270	160	132	248	M7	<5
SBI-22/43-04			110	210		102	210	1017	.0
SSI-30/60-04	30	60	146	270	160	132	248	M7	<5
SBI-30/60-04	30	00	140	270	100	132	240	IVI7	\3
SSI-37/75-04	37	75	146	270	160	132	248	M7	<5
SBI-37/75-04	37	73	140	210	100	132	240	IVI7	\0
SSI-45/90-04	45	90	146	270	160	132	248	M7	<5
SBI-45/90-04	70	30	170	210	100	102	270	1017	٠,٥
SSI-55/110-04	55	110	146	270	160	132	248	M7	<5
SBI-55/110-04		110	1-10	210	100	102	2-70	1017	,,

Габаритные и установочные размеры устройств плавного пуска серии SSI мощностью от 75 кВт до 600 кВт

Модоли Мощнос		Ток,	Габ	ариты,	MM	Установо	меры, мм	Macca	
Модель	кВт*	Α	Ш	В	Γ	Ш1	B1	d	нетто, кг
SSI-75/150-04	75	150	257	515	198	198	382	M9	<21
SSI-90/180-04	90	180	257	515	198	198	382	M9	<21
SSI-115/230-04	115	230	257	515	198	198	382	M9	<21
SSI-132/264-04	132	264	257	515	198	198	382	M9	<21
SSI-160/320-04	160	320	257	515	198	198	382	M9	<21
SSI-185/370-04	185	370	257	515	198	198	382	M9	<21
SSI-200/400-04	200	400	257	515	198	198	382	M9	<21
SSI-250/500-04	250	500	290	565	245	223	465	M9	<25
SSI-280/560-04	280	560	290	565	245	223	465	M9	<25
SSI-320/640-04	320	640	290	565	245	223	465	M9	<25
SSI-355/710-04	355	710	330	595	245	250	505	M9	<30
SSI-400/800-04	400	800	330	595	245	250	505	M9	<30
SSI-450/900-04	450	900	330	595	245	250	505	M9	<30
SSI-500/1000-04	500	1000	410	665	255	350	547	M9	<42
SSI-600/1200-04	600	1200	410	665	255	350	547	M9	<42

^{*} Мощность, указанная в таблице, является максимально допустимой номинальной мощностью подключаемого электродвигателя. Номинальная мощность электродвигателя не должна превышать указанное значение.

_				
Ιип	ona	зме	пы	MM

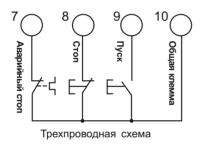
Timopasinopsi,iiiii												
001.75 000.04	Α	В	С	C1	C2	Е	E1	Р	P1	P2	K	d1
SSI-75200-04	50	80	32	49	85	99	47	84	12	53	40	12
001.050.000.04	Α	В	С	C1	C2	Е	E1	Р	P1	P2	K	d1
SSI-250320-04	54	91	33	46	84	67	48	51	12	35	40	12
001.055 450.04	Α	В	С	C1	C2	Е	E1	Р	P1	P2	K	d1
SSI-355450-04	60	106	33	46	83	70	48	50	12	35	40	12

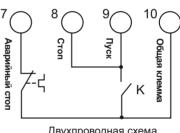
4. ВНЕШНИЕ СОЕДИНЕНИЯ

При эксплуатации устройств серии SSI и SBI используются подключения двух типов:

- Коммутации силовой части, включающие в себя: подключение к трехфазной сети, подключение к электродвигателю и подключение к обводному контактору. Автоматический выключатель и обводной контактор (байпас) выбираются в соответствии с номинальным током устройства плавного пуска.
- Коммутации внешнего управления, включающие использование двенадцати клемм, в том числе клемм запуска/останова и клемм выходного аналогового сигнала.

4 1 КПЕММЫ УПРАВПЕНИЯ

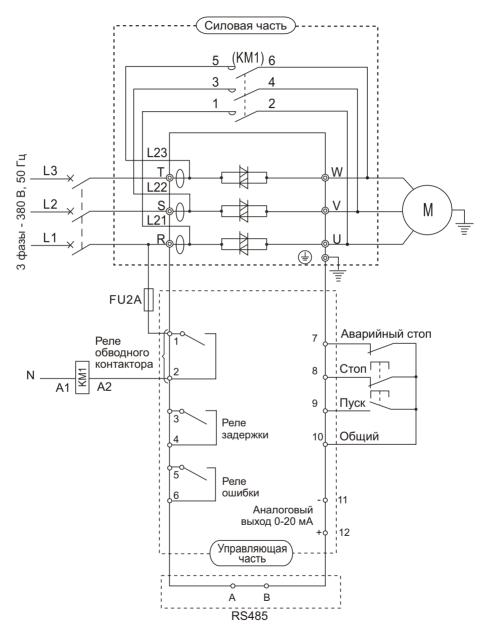

Устройства плавного пуска серии SSI



Устройства плавного пуска серии SBI

- Клеммы 1 и 2 используются для управления обводным контактором (байпасом). Клеммы нормально разомкнуты. Замыкание клемм происходит по окончании разгона электродвигателя. Характеристика клемм: ~250/400B-5A.
- Клеммы 3 и 4 являются выходом программируемого реле, режим работы которого устанавливается параметром FP. Задержка сигнала реле устанавливается параметром F4. Клеммы нормально разомкнуты. См. описание п. 5.3. Характеристика клемм: ~250/400B-5A.
- Клеммы 5 и 6 являются выходом реле ошибки. Они замыкаются в случае возникновения ошибки или при потере питания. При нормальной работе они разомкнуты. Характеристика клемм: ~250/400B-5A.
- Клемма 7 используется для мгновенного останова электродвигателя. При нормальной работе клемма должна быть соединена с клеммой 10. При размыкании клемм устройство останавливает электродвигатель и переходит в режим ошибки. Клемма 7 может управляться дополнительными контактами внешних защитных устройств и не используется, если FC присвоено значение «0» (базовая защита).
- Клеммы 8, 9 и 10 являются клеммами запуска/останова. Возможно управление работой устройства по двух- и трехпроводной схеме.

Двухпроводная схема Замыкание ключа К - пуск Размыкание ключа К - стоп


 Клеммы 11 и 12 выводят унифицированный аналоговый сигнал 0 - 20 мА, отражающий текущее значение тока электродвигателя. Ток в 20мА соответствует максимальному значению измеряемого тока, которое равно четырехратному номинальному току устройства плавного пуска. Значение сопротивления нагрузки выхода не должно превышать 300 Ом.

Примечание:

Для предотвращения повреждений устройства, убедитесь в правильности подключения клемм.

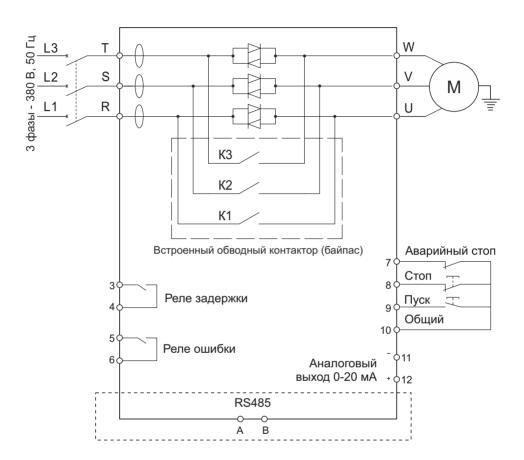
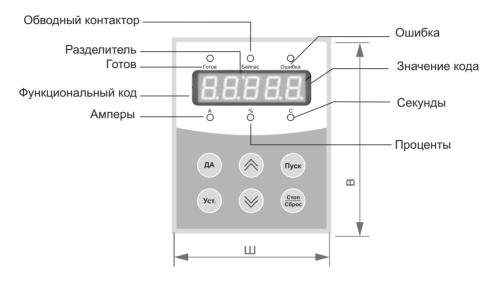

4.2 СХЕМЫ ПОДКЛЮЧЕНИЯ

Схема подключения с внешним обводным контактором для серии SSI

^{*}Напряжение управляющей цепи клемм 7, 8, 9, 10 +12VDC

Схема подключения с встроенным обводным контактором для серии SBI



^{*}Напряжение управляющей цепи клемм 7, 8, 9, 10 +12VDC

5. ПАНЕЛЬ УПРАВЛЕНИЯ И ЕЕ ПРИМЕНЕНИЕ

Устройство плавного пуска может находиться в пяти следующих статусах: Готов, Работа, Ошибка, Останов, Запуск. Панель управления отображает ток электродвигателя в процессе разгона и останова. В других статусах отображаются меню настройки и помощи.

5.1 ПРИМЕНЕНИЕ ПАНЕЛИ И НАСТРОЙКА ПАРАМЕТРОВ

Размеры панели управления, серии SSI и SBI:

	В	Ш	Γ
		MM	
Габаритные размеры	115	91	17
Установочные размеры	110	88	15

- Готовность к работе: Кнопку **Пуск** можно нажимать только после того, когда загорится лампа «Готов» и на дисплее отобразится надпись « rERdy ».
- Статус ожидания: Когда горит лампа «Готов» или «Ошибка», это означает, что устройство находится в статусе ожидания или остановлено в связи с ошибкой. Если на дисплее отображается «dEXXX», это значит, что активна функция задержки запуска.
- Кнопки Пуск и Стоп: В процессе разгона на дисплее отображается значение в формате «XXXX», которое равно текущему значению тока электродвигателя. В это время может быть использована только кнопка Стоп. Лампы «Готов» и «Ошибка» в этот момент не горят и невозможен вход в меню настроек и помощи. В процессе останова электродвигателя на дисплее также отображается текущее значение тока электродвигателя в формате «XXXX».
- В этот момент доступна только кнопка **Пуск**, лампы «Готов» и «Ошибка» в этот момент не горят и не возможен вход в меню настроек и помощи. Кнопка **Стоп** имеет функцию сброса ошибки.
- Кнопка Уст: При нажатии на кнопку Уст происходит переход в режим настройки и на дисплее отображается код параметра в формате FX: XXX. При повторном нажатии кнопки Уст. происходит переход в режим редактирования параметра, при этом значение редактируемого параметра мигает на дисплее. Для фиксации установленного значения параметра необходимо нажать кнопку Да. Если параметр не нужно менять, необходимо снова нажать кнопку Уст, чтобы значение перестало мигать. Для дальнейшей настройки нужно нажать кнопку Да. Нажатие на кнопку Стоп приведет к выходу из режима настройки.
- Кнопка Да: Нажатие на кнопку Да приведет к переходу в меню помощи и на дисплее появится значение в формате НХ: ХХХ. После прочтения меню помощи нужно снова нажать на кнопку Да, либо нажать Стоп для выхода. Эта кнопка может использоваться не только для подтверждения установленных значений, но также в качестве команды «назад».

5.2 ПОЯСНЕНИЯ КУСТАНОВКЕ ПАРАМЕТРОВ

Код	Описание	Диапазон значений	Зав. Знач.	Примечание
F0	Уставка напряжения	30-70%	30%	Параметр используется при запуске в режиме рампы по напряжению. В случае тяжелой нагрузки, установите значение F0=40%, или немного выше. В режиме ограничения тока параметр фиксируется на значении 40%
F1	Время плавного пуска	2-60c	16c	Параметр не действует при запуске в режиме «Ограничение тока»
F2	Время плавного останова	0-60c	0c	При значении равном «0» свободный останов. Если к устройству параллельно подключено несколько электродвигателей, то параметр F2=0
F3	Интервал задержки запуска	0-999c	0c	При нажатии кнопки «Пуск» начинается обратный отсчет. При значении «0» запуск электродвигателя производится сразу
F4	Задержка сигнала выходного реле	0-999c	0с	Используется при програм- мировании задержки выходного сигнала на клеммах 3 и 4. Установка значения «0» приводит к срабатыва- нию реле без задержки (см. описание параметра FP)
F5	Интервал задержки при перегреве	0-999c	0c	Задержка выключения по перегреву. Во время задержки мигает индикаторная лампа.
F6	Ограничение пускового тока	50-500%	400%	Используется в режиме ограничения тока. В режиме рампы по напряжению, фиксируется на значении 400%
F7	Максимальный рабочий ток УПП	50-200%	100%	Процент от номинального тока двигателя в диапазоне 50 - 200%.
F8	Выбор режима ввода данных	0-3	1	Используется для выбора режима ввода и мониторинга данных.
F9	Защита по падению напряжения	40-90%	80%	Если напряжение ниже установленного значения (80%), срабатывает защита по падению напряжения.
FA	Защита по превышению напряжения	100-140%	120%	Если напряжение выше установленного значения (120%), срабатывает защита по превышению напряжения

Код	Наименование	Диапазон	Зав.	Описание			
Fb	Режим пуска	значений 0-5	3нач.	0: Ограничение тока 1:Рампа по напряжению 2: Запуск рывком + ограничение тока 3: Запуск рывком + рампа по напряжению 4: Рампа по току 5: Двойной контур регулирования			
FC	Уровень защиты	0-4	3	0: Базовый 1: Легкая нагрузка 2: Стандартный 3: Тяжелая нагрузка 4: Оптимальный			
Fd	Режим управления	0-6	1	0: Управление с панели 1: Управление с панели и клемм управления 2: Управление с клемм 3: Управление с клемм и по RS-485 4: Управление с панели, клемм и по RS-485 5: Управление с панели и по RS-485 6: Управление по RS-485 7: Управление от всех источников отключено			
FE	Автоматический перезапуск	0-13	0	Автоматический перезапуск активен, если параметр FE>0. Эта функция действует только в режиме внешнего 2-х проводного управления. См 5.7			
FF	Разрешение на изменение параметра	0-2	1	00: не разрешено изменение параметро 01: разрешено изменение параметров 02: разрешено изменение всех параметров			
FH	Адрес устройства	0-63	1	Адрес устройства в сети MODBUS RTU			
FJ	Скорость пере- дачи данных	0-4	3	0: 1200			
FL	Формат данных	0-5	1	0: 8-N-1 2: 8-O-1 4: 8-E-2 1: 8-E-1 3: 8-N-2 5: 8-O-2			
FP	Функция выходного реле	0-19	7	См. п. 5.3			
FU	Ограничение тока останова	20-100%	80%	См. п. 7.3			
Fo	Номинальный ток электродви- гателя	Номина- льный ток УПП	Норм. значе- ние эл.дви- гателя	мощность электродвигателя намног меньше номинальной мощност устройства плавного пуска, установит			
Fr	Сервисное меню	_	_	_			

Примечание:

- Максимальный рабочий ток (код F7) -максимальный ток при продолжительной работе электродвигателя на основе установленного значения Fo.
- Если в режиме настройки параметров не совершается действий в течение 2 минут, происходит автоматический выход из режима настройки.
- В процессе запуска и останова настройка производиться не может.
- Для сброса параметров к заводским значениям необходимо перед подачей питания на устройство нажать и удерживать после подачи питания кнопку «ДА» в течение 2-3 секунд до появления звукового сигнала.
- Время плавного запуска F1 можно регулировать только в режиме «Рампа по напряжению» Fb=1.
- Время плавного останова задается в параметре F2, при установки F2=0 останов электродвигателя происходит на выбеге, при установки F2>0 останов электродвигателя происходит от U_{ном} до напряжения F0 за время F2.
- Выбор режима отображения и ввода данных F8

Значение F8	0	1	2	3
Режим ввода	Значение в	Значение в	Значение в	Значение в
F6	амперах	процентах	амперах	процентах
Режим	Значение в	Значение в	Значение в	Значение в
отображения	амперах	амперах	амперах	амперах

5.3 ФУНКЦИИ ПРОГРАММИРУЕМОГО ВЫХОДНОГО РЕЛЕ

Выходное реле может отображать сигналы двух типов: выполнение команд и изменение статуса устройства.

• Если параметру FP присвоены значения 0-4 (или 10-14), выходное реле отражает выполнение команд следующим образом:

Значение параметра	0 (10)	1 (11)	2 (12)	3 (13)	4 (14)
Состояние выходного реле	Поступление команды Пуск	Начало запуска	Срабатывание байпаса	Поступление команды Стоп	Окончание останова

При необходимости задержки сигнала, используется параметр F4.

Для значений 0-4 состояние выходного реле НО.

Для значений 10-14 состояние выходного реле Н3.

• Если параметру FP присвоены значения 5-9 (или 15-19), выходное реле отражает статус устройства следующим образом:

Значение параметра	5 (15)	6 (16)	7 (17)	8 (18)	9 (19)
Состояние выходного реле	Ошибка	Работа	Готов к запуску	Процесс запуска	Включен байпас

- Для значений 5-9 состояние выходного реле НО.
- Для значений 15-19 состояние выходного реле НЗ.
- В случае отражения статуса работы программируемым реле, использование параметра задержки F4 не имеет смысла и не используется.
- По умолчанию параметр FP имеет значение «7», отражающее состояние готовности устройства к запуску электродвигателя.
- Когда параметр FP имеет значение «5», клеммы реле 3 и 4 срабатывают при ошибках, связанных с электродвигателем, таких как Err05, Err06, Err07, Err08, Err12. При этом, функции клемм 5 и 6 (выход реле ошибки) остаются неизменными.
- При значениях параметра FP>9, программируемое реле переходит в нормально-закрытый режим и выходной сигнал инвертируется.

5.4 РЕЖИМЫ УПРАВЛЕНИЯ

Параметр Fd определяет способ управления запуском:

- 0: Управление с панели
- 1: Управление с панели и клемм управления
- 2: Управление с клемм
- 3: Управление с клемм и по RS485
- 4: Управление с панели, клемм и по RS485
- 5: Управление с панели и по RS485
- 6: Управление по RS485
- 7: Управление от всех источников отключено

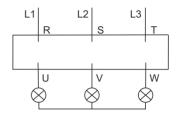
Примечание:

• При управлении с клемм, должны быть использованы нормально-замкнутые кнопки между клеммами 7, 8 и клеммой 10, в противном случае устройство плавного пуска не запустит электродвигатель и покажет ошибку Err01.

5.5 ИНФОРМАЦИОННОЕ МЕНЮ

Если устройство не находится в режиме запуска, останова или настройки параметров, нажатие на кнопку **Да** приведет к переходу в меню помощи. Нажатие на кнопки «Вверх» и «Вниз» позволяет перелистывать сообщения меню помощи. Повторное нажатие на кнопку **Да** или нажатие на кнопку **Стоп** приведет к выходу из меню помощи.

Отображаемое сообщение	Пояснение
U0380	Тип питания ~380В
030-3	Модель устройства 30 А 3 фазы
HI:EO I	Последняя ошибка - Err01
H9:E00	Записи ошибок отсутствуют
UR-3.0	Версия программы Ver 3.0
L0000	0000 - количество успешных запусков
RUNDO	00 - длительность последнего запуска


Примечание:

Ячейки Н1...Н9 сохраняют в памяти 9 последних ошибок.

5.6 МЕТОД ПРОВЕРКИ ФУНКЦИОНИРОВАНИЯ УСТРОЙСТВА ПЛАВНОГО ПУСКА БЕЗ ЭЛЕКТРОДВИГАТЕЛЯ

Монтажник или конечный потребитель не имеющие в наличии электродвигателя для теста, могут протестировать свою систему на работоспособность подключив три лампы накаливания от 100Вт до 200Вт по схеме звезда. Нужно учесть, что выходной ток будет очень мал и УПП будет

выходить в ошибку Err05 «Потеря выходной фазы» и останавливаться, поэтому необходимо изменить параметр FC в 0 (Уровень защиты), УПП перестанет выходить в ошибку. После запуска УПП, лампы накаливания должны начать постепенно разгораться, после выхода ламп на полную мощность УПП должно переключить питание нагрузки через байпасный контактор.

5.7 АВТОМАТИЧЕСКИЙ ПЕРЕЗАПУСК

Для автоматического перезапуска необходимо перевести устройство плавного пуска в режим управления Fd – управление с клемм, подключить пульт управления по двух-проводной схеме и установить функциональный код Fe>0.

FE = 1-9

Значение от 1 до 9 определяет количество автоматических перезапусков. При сбое сетевого питания и его восстановления, на панели управления УПП начнет мигать сообщение "ready", включиться внутренний таймер задержки и устройство автоматически запуститься через 60 секунд. В этом режиме НЕЛЬЗЯ остановить двигатель с помощью снятия сигнала с клеммы «Пуск» или нажатием кнопки «Стоп» на панели управления, только снятием питающего напряжения. Каждое выключение и включение питания будет приводить к автоматическому перезапуску с задержкой 60 сек.. Значение параметра F5 не влияет на время задержки перед включением.

FE = 10

При значении FE=10 управление запуском/остановом производится с внешних клемм. При подаче питания и активном сигнале на клемме «Пуск», будет произведен запуск электродвигателя. При подачи команды «Стоп» УПП останавливает электродвигатель и переходит в режим «Задержки на включение», задержка на включение устанавливается в параметре F5, по истечении этого времени на УПП снова можно подавать команду «ПУСК».

FE = 11

При значении FE=11 управление запуском/остановом производится с внешних клемм. При подаче питания и активном сигнале на клемме «Пуск», электродвигатель не запустится, только после подачи команды «Стоп» можно будет запустить электродвигатель. При подачи команды «Стоп» УПП останавливает электродвигатель и переходит в режим «Задержки на включение», задержка на включение устанавливается в параметре F5, по истечении этого времени на УПП снова можно подавать команду «ПУСК».

FE = 12

При значении FE=12 управление запуском/остановом производится с внешних клемм. При подаче питания и активном сигнале на клемме «Пуск», будет произведен запуск электродвигателя. При подачи команды «Стоп» УПП останавливает электродвигатель и переходит в режим «Задержки на включение», задержка на включение устанавливается в параметре F5, по истечении этого времени на УПП можно снова подавать команду «ПУСК». При останове в следствии ошибки автоматический перезапуск будет отключен, до момента устранения и сброса ошибки.

FE=13

При значении FE=13 управление запуском/остановом производится с внешних клемм. При подачи команды «Стоп» УПП останавливает электродвигатель и переходит в режим «Задержки на включение», задержка на включение устанавливается в параметре F5, по истечении этого времени на УПП снова можно подавать команду «ПУСК». Если электродвигатель на момент отключения питания вращался, то при включении питания он будет автоматически запущен.

6. ФУНКЦИИ ЗАЩИТЫ И ИХ ПРИМЕНЕНИЕ

6.1 ПАРАМЕТРЫ ФУНКЦИЙ ЗАЩИТЫ

- Функции защиты позволяют обеспечить в процессе работы защиту устройства плавного пуска и электродвигателя. Пожалуйста, выбирайте значения параметров защиты в соответствии с вашими условиями
- Защита от перегрева: если температура внутри устройства плавного пуска повышается до 90 °C ± 5 °C, устройство отключается по защите от перегрева. Защита отключается при понижении температуры до 60 °C
- Обрыв входной фазы: задержка срабатывания <3 с
- Обрыв выходной фазы: задержка срабатывания <3 с
- Перекос фаз: задержка срабатывания <3 с. Защита срабатывает при разнице токов по фазам более чем на $50\% \pm 10\%$
- Токовая защита при запуске: время срабатывания токовой защиты при запуске при пятикратном превышении тока устанавливается параметром FC, параметры указаны в п. 6.2.
- Защита от перегрузки в процессе работы: устройство реализует тепловую защиту электродвигателя. Защита определяется максимальным рабочим током электродвигателя (устанавливается параметром F7), время срабатывания защиты в соответствии с установленным параметром FC и диаграммой 6.2.
- Защита от пониженного напряжения: при падении напряжения до 40% от величины номинального значения защита срабатывает менее чем через 0,5 с, а при падении напряжения до 80% от номинального значения, защита срабатывает менее чем через 3 с
- Защита от повышенного напряжения: при повышении напряжения до 120% от номинального значения защита срабатывает менее чем через 3 с, а при повышении напряжения до 140% и выше защита срабатывает менее чем через 0.5 с
- Защита от короткого замыкания нагрузки: время срабатывания менее 0,1 с

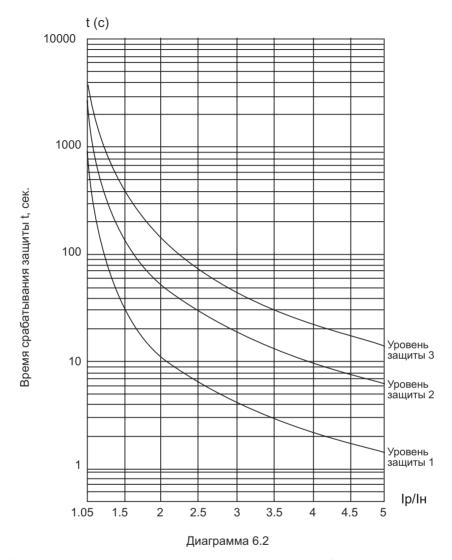
6.2 КЛАССЫ ЗАЩИТЫ И ИХ ОПИСАНИЕ

В соответствии с условиями эксплуатации, устройства плавного пуска имеют четыре уровня защиты:

- 0. Базовая
- 1. Для легких нагрузок
- 2. Стандартная
- 3. Для тяжелых нагрузок
- 4. Оптимальная

Базовая зашита:

- защиту от перегрева
- защита от потери входной фазы во время запуска
- не активна функция аварийного останова


Примечание: Базовая защита применяется, когда вероятность аварий в процессе работы минимальная или аварийный останов не целесообразен (например, пожарный насос)

Защита для легких, стандартных и тяжелых нагрузок:

- Защита от перегрева устройства плавного пуска
- Защита от обрыва входной фазы
- Защита от обрыва выходной фазы
- Защита от перекоса фаз
- Токовая защита при запуске
- Защита от перегрузки в процессе работы двигателя
- Защита от пониженного напряжения
- Защита от повышенного напряжения
- Защита от короткого замыкания нагрузки
- Защита от длительного пуска

Примечания: Стандартная защита и защита для тяжелых нагрузок реализуют все доступные защиты. Разница заключается только в уровне защиты от перегрузки и защиты по току (см. диаграмму 6.2)

Уровень защиты (параметр FC)	0: Базовый		лег рузо		ı • .	анд ый	ар-		тяже узок		_	ти- альн	
Время срабатывания токовой защиты при запуске (при пятикратном превышении тока, установленного параметром)	Нет	3	3 сек		1	5 ce	ЭК	3	30 ce	ŀК	1	5 c	ек
Уровень защиты от перегрузки в процессе работы (на диаграмме 6.2)	Нет	Нет Ур. 1		Ур. 2		`	∕p. 3			Ур.	2		
Превышение номинального тока, раз	-	3	4	5	3	4	5	3	4	5	3	4	5
Время срабатывания защиты от перегрузки в процессе работы	-	4,5	2,3	1,5	23	12	7,5	46	23	15	23	12	7,5

Графики тепловой защиты электроэдвигателя (время срабатывания защиты от перегрузки)

Ін – номинальный ток электродвигателя

Ір – рабочий ток электродвигателя

Примечания:

- Значение параметра Fo должно соответствовать номинальному току, указанному на шильде электродвигателя
- Значение параметра Fo не должно быть менее 20% от номинального тока устройства плавного пуска, в противном случае тепловая защита не будет функционировать из-за превышения допусков

7. ТЕСТОВЫЙ ЗАПУСК И ПРИМЕНЕНИЕ

Перед первым применением проверьте следующее:

- 1. Соответствие номинального тока устройства плавного пуска току электродвигателя
- 2. Состояние обмоток электродвигателя
- 3. Правильность соединения силового контура и цепей управления
- 4. Затяжку винтов на всех клеммах

7.1 ПОДКЛЮЧЕНИЕ ПИТАНИЯ И ПОДГОТОВКА К ЗАПУСКУ

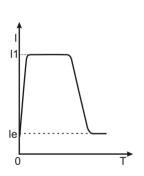
- После подключения питания не снимайте корпус с устройства, это опасно!
- После подключения питания на дисплее должна появиться надпись « ¬ЕЯдЧ», и загореться лампа «Готов». После этого устройство готово к работе.
- Перейдите в параметр Fo и введите значение номинального тока электродвигателя, которое указано на заводской табличке.
- Во время тестового запуска убедитесь в правильном направлении вращения мотора. Для остановки электродвигателя используйте кнопку **Стоп**.
- Если электродвигатель плохо запускается, убедитесь в правильности выбора режима запуска. Подробное описание режимов запуска приведено в п. 7.2
- При недостаточности крутящего момента в процессе запуска, в режиме рампы по напряжению, следует увеличить напряжение, а в режиме ограничения тока - установленный ток.
- Никогда не вскрывайте устройство, если оно подключено к сети.
- В случае появления постороннего шума, запаха или дыма, немедленно отключите питание и проверьте возможную причину проблем.
- Если в процессе запуска или работы загорелась лампа «Ошибка» и на дисплее появилась надпись «Err×», посмотрите описание ошибки для определения причин ее возникновения.
- Устраните неисправность.
- Нажмите кнопку **Стоп** на панели управления или внешнюю кнопку Стоп для сброса ошибки.

Примечание:

Если температура окружающей среды была ниже -30 °C, то до начала эксплуатации устройство плавного пуска необходимо прогреть при комнатной температуре в течение 30 минут.

Ошибки, причины возникновения и способы устранения

	· · · · · · · · · · · · · · · · · · ·	
Сообщение на дисплее	Описание ошибки	Причина и способ устранения
Err00	Ошибки отсутствуют	Все ошибки удалены, горит лампа «Готов». Устройство готово к работе
Err01	Отключение по внешней команде Аварийный стоп	Проверьте соединение клеммы Аварийный Стоп (клемма 7) и клеммы Стоп (клемма 8) с Общей клеммой (клемма 10)
Err02	Перегрев устройства	Запуски осуществляются слишком часто, мощность устройства не соответствует мощности электродвигателя или нагрузка электродвигателя слишком тяжелая
Err03	Превышение времени запуска (более 60 с)	Параметры запуска установлены неправильно, или нагрузка электродвигателя слишком тяжелая, или мощность питающей сети недостаточна, или питающий кабель слишком длинный
Err04	Потеря входной фазы	Проверьте наличие входного трехфазного напряжение питания, правильность подключения к сети устройства и байпасного контактора, проверьте работоспособность контактора
Err05	Потеря выходной фазы	Проверьте правильность подключения устройства и контактора к электродвигателю и целостность обмоток электродвигателя, проверьте работоспособность контактора. Кабель входного напряжения должен быть подключен к клеммам R, S, T, а обводный контактор - к клеммам L21, L22, L23
Err06	Перекос фаз	Проверьте характеристики входного трехфазного питания, целостность и симметрию сопротивления обмоток электродвигателя
Err07	Превышение пускового тока	Нагрузка слишком большая или устройство неправильно подобрано к электродвигателю
Err08	Перегрузка в процессе работы	Слишком большая нагрузка или неправильно установлен параметр F7 и FP
Err09	Падение напряжения	Проверьте напряжение в сети или правильность установки параметра F9
Err10	Превышение напряжения	Проверьте напряжение в сети или правильность установки параметра FA
Err11	Параметры установлены неправильно	Сбросить на заводские настройки - удерживайте нажатой кнопку Да перед подачей питания на устройство
Err12	Короткое замыкание нагрузки	Проверьте электродвигатель и кабель на предмет короткого замыкания

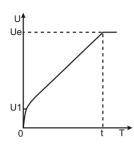

Err13	Соединение для режима авто- перезапуска сделано неправильно	Клеммы соединены не по двухпроводной схеме				
Err14	Внешние клеммы соединены неправильно	Не замкнуты контакты кнопки Аварийный Стоп, подключенной к клеммам управления.				
Err15	Потеря/недостаточность нагрузки	Проверьте соответствие номинальных параметров электродвигателя нагрузке				
	Некоторые ошибки могут быть взаимосвязаны, поэтому внимательно проверьте все возможные причины					

Примечание:

В случае успешного запуска должна загореться лампа «Байпас», что означает подачу замыкающего сигнала на контактор. Если при этом электродвигатель не вращается, проверьте правильность соединения контактора.

7.2 РЕЖИМЫ ЗАПУСКА И ИХ ПРИМЕНЕНИЕ

Существует шесть режимов запуска, которые могут быть выбраны пользователем в зависимости от характера нагрузки.


7.2.1 Запуск в режиме ограничения тока

Режим ограничения тока действителен, если параметру Fb присвоено значение «0».

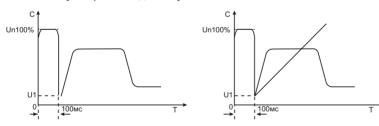
На диаграмме показана функция изменения тока электродвигателя в режиме ограничения тока. 11 это установленное значение ограничения пускового тока. При запуске напряжение быстро нарастает до тех пор, пока ток не достигнет значения ограничения пускового тока I1. После этого, по мере разгона мотора выходное напряжение растет. поддерживая ток на максимальном значении. По завершении разгона обеспечивается резкий сброс тока до номинального значения le и производится включение байпаса.

Примечание:

Ток может не достигать максимального значения при легкой нагрузке или если установлено слишком высокое значение I1. Режим используется, если максимальный ток лимитирован.

7.2.2 Запуск в режиме рампы по напряжению

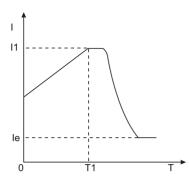
Режим действителен, если параметру Fb присвоено значение «1». На диаграмме представлена динамика изменения напряжения в процессе запуска. При пуске, если ток электродвигателя не превышает 400% от номинального значения, выходное напряжение быстро возрастает до значения U1. Далее, напряжение плавно повышается до номинального значения (Ue), двигатель плавно разгоняется до номинальной скорости. Затем производится включение байпасного контактора и процесс запуска завершается.


Время разгона «t» установлено эмпирически, исходя из работы устройства стандартной нагрузкой. При плавном пуска CO электродвигателя устройство плавного пуска контролирует не время «t», а выходное напряжение, обеспечивая плавный рост скорости электродвигателя. при легкой нагрузке время разгона может быть установленного времени плавного пуска, при сохранении требуемой плавности пуска. Режим рампы по напряжению является режимом, используемым по умолчанию, он применяется в случаях, когда требуется обеспечить высокую плавность запуска при отсутствии ограничений по току.

Примечание:

«t» - это время, автоматически определяемое исходя из характера нагрузки. При легких нагрузках оно может быть меньше, чем установленное время плавного пуска. Этот режим применяется, когда важен плавный набор оборотов электродвигателя.

7.2.3 Режим запуска рывком


Режим запуска рывком действует, если Fb имеет значения «2» или «3».

На диаграммах представлена динамика изменения выходного напряжения. Этот режим используется в том случае, если начального момента недостаточно для преодоления статического трения скольжения во время запуска. Для этого напряжение резко повышается до номинального на короткое время в самом начале запуска. Далее, пуск производится в режиме ограничения тока, или в режиме рампы по напряжению.

Примечание:

Поскольку режим запуска рывком приводит к высоким токовым перегрузкам электродвигателя, в случае, если электродвигатель может запускаться в режиме рампы по напряжению, или ограничения тока, использование этих режимов - предпочтительнее.

7.2.4 Запуск в режиме рампы по току

Режим действителен, если параметру Fb присвоено значение «4».

Динамика изменения тока показана диаграмме. Максимальное значение тока I1 в этом режиме ограничивается значением параметра F3. Время пуска T1 определяется параметром F1. Режим используется для быстрого разгона в течение ограниченного времени, применяется для разгона двухполюсных электродвигателей и позволяет снизить время разгона.

7.2.5 Режим запуска с двойным контуром регулирования

Режим действителен, если параметру Fb присвоено значение «5».

В этом случае одновременно применяется регулирование в режимах рампы по напряжению и ограничения тока. Динамика изменения выходного напряжения различна для разных электродвигателей и видов нагрузки. Режим используется, когда требуется плавный набор оборотов электродвигателя при токовых ограничениях.

7.3 РЕЖИМ ПЛАВНОГО ОСТАНОВА И ЕГО ПРИМЕНЕНИЕ

Устройство может работать в режимах плавного и свободного останова.

7.3.1 Режим плавного останова

Режим плавного останова действителен, если значение параметра F2 отлична от 0.

Режим главного останова активируется только для инерционных нагрузок и если оценочные значения момента инерции меньше 20% то режим плавного останова не активируется. Торможение инерционных нагрузок происходит путем снижения напряжения за время F2 от номинального напряжения до напряжения установленного в параметре F0.

7.3.2 Режим свободного останова

Режим действует при параметре F2 равном 0.

В этом режиме для останова электродвигателя устройство плавного пуска отключает байпас и запрещает открытие тиристорных ключей после получения команды на останов. Электродвигатель останавливается на свободном выбеге по инерции. Если плавный останов не требуется, рекомендуется применение свободного останова, т.к. этот режим продлевает ресурс устройства плавного пуска. В этом режиме запрещен мгновенный запуск, что предотвращает токовые перегрузки в процессе эксплуатации. В случае, если одно устройство плавного пуска используется для пуска двух электродвигателей одновременно, обязательно использование режима свободного останова.

7.4. СПЕЦИАЛЬНОЕ ПРИМЕНЕНИЕ

- Параллельный запуск нескольких электродвигателей: Если совокупная мощность нескольких электродвигателей менее 80% от номинальной мощности устройства плавного пуска, электродвигатели могут быть присоединены к устройству параллельно. При этом, необходимо дополнительно обеспечить каждый электродвигатель устройством тепловой защиты.
- Использование устройств защиты от импульсных перенапряжений (УЗИП): Рекомендуется установка устройств защиты от импульсных перенапряжений в случаях риска воздействия грозовыми разрядами, или иными факторами, такими как перенапряжение в сети, броски тока и т.п. Детали использования см. в руководстве по применению УЗИП.
- Реле напряжения (РН): в процессе плавного запуска электродвигателя защита УПП от повышенного и пониженного напряжения не активна. Для предотвращения аварийных ситуаций рекомендуется установка реле напряжения (рекомендуемая уставка напряжения 380+-20%).

Внимание!

Пусковой момент, развиваемый электродвигателем пропорционально квадрату пуска тока, ограниченного за счет применения устройства плавного пуска:

 $\dot{M}\Pi = MH.\Pi * (I\Pi / IH.\Pi)^2$ где:

Мп - пусковой момент

Мн.п - номинальный пусковой момент

Іп - пусковой ток, ограниченного за счет применения упп

Ін.п - номинальный пусковой ток при прямом пуске электродвигателя

Отсюда следует, что при использовании устройства плавного пуска необходимо устанавливать такое значение пускового тока (параметр F6), при котором пусковой момент будет превышать момент нагрузки. Если в процессе разгона момент на валу электродвигателя окажется меньше момента нагрузки, механизм не разгонится до номинальной скорости.

8. КОММУНИКАЦИОННЫЙ ПРОТОКОЛ MODBUS RTU

8.1 ИНТЕРФЕЙС ОБМЕНА ДАННЫМИ

Разъем DB-9 включает в себя двухпроводной интерфейс RS485.

Db-9
2 - B (RS485+)
3 - A (RS485-)
5 - GND
1; 4; 6; 7; 8; 9 - не используются

Прежде чем подключаться по протоколу связи RS485. Вы должны установить адрес устройства плавного пуска, скорость обмена данными, формат данных.

FH Адрес устройства Диапазон установки: 00-63 Заводская установка:01 Когда адрес связи в Master устройстве установлен в 0, это широковещательный адрес, все Slave устройства на шине MODBUS будут принимать пакеты данных, но отвечать на них не будут. Обратите внимание, что адрес Slave устройства не может быть установлен в 0.

Адрес связи плавного пуска уникален в сети связи, которая является основой для двухточечной связи между хостом и устройством плавного пуска.

FJ Скорость передачи данных

Диапазон установки: 0-5 Заводская установка: 3

Этот параметр определяет скорость передачи в бодах, требуется установить такой же, как на Master устройстве.

FL Формат передачи данных Диапазон установки : 0 - 5 Заводская установка : 1

Этот параметр определяет формат данных, для обеспечения нормальной связи требуется установить такой же, как на Master устройстве.

0: 8-N-1 2: 8-O-1 4: 8-E-2 1: 8-E-1 3: 8-N-2 5: 8-O-2

Формат передаваемых данных

Формат данных	Адрес	Код функции	Область данных	CRC-код
Длина данных:	1 байт	1 байт	N байтов	2 байта

Адреса регистров

Адрес регистра	Код операции	Функция регистра
1000h	06	Регистр управления
1001h	03	Регистр состояния
3000h	03	Регистр сетевого напряжения
3001h	03	Регистр тока нагрузки
5000h	03	Регистр ошибки
5001h	03	Регистр ошибки связи
8000-8016h	03&06	Регистры настройки функциональных параметров устройства плавного пуска

Поддерживаемые коды

Устройство плавного пуска поддерживает только нижеперечисленные коды. Использование других кодов приведет к формированию обратного кода ошибки 01.

Код	03	06	08	10
Описание	Чтение	Запись	Проверка	Установка
функции	регистра	в регистр	связи	группы регистров

Спецификация регистров

Регистр управления 1000h

Адрес регистра	hex	Выполняемая функция
	1h	Пуск
1000h	2h	Стоп
	3h	Сброс ошибки

Регистр состояния 1001h

Адрес регистра	hex	Выполняемая функция
	0h	Готов
	1h	Ошибка
1001h	2h	Сброс ошибки
	3h	Плавный пуск
	4h	Плавный останов

Регистр ошибки 5000h

Регистр ошиоки эффот				
Адрес регистра	hex	Выполняемая функция		
	0h	Ошибки отсутствуют		
	1h	Отключение по внешней команде Аварийный стоп		
	2h	Перегрев устройства		
	3h	Превышение времени запуска (более 60 сек)		
	4h	Потеря входной фазы		
	5h	Потеря выходной фазы		
	6h	Перекос фаз		
	7h	Превышение пускового тока		
5000h	8h	Перегрузка в процессе работы		
	9h	Падение напряжения		
	Ah	Превышение напряжения		
	Bh	Параметры установлены неправильно		
	Ch	Короткое замыкание нагрузки		
	Dh	Соединение для режима авто-перезапуска сделано неправильно		
	Eh	Внешние клеммы соединены неправильно		
	Fh	Потеря/недостаточность нагрузки		

Регистр ошибки связи 5001h

Адрес регистра	hex	Параметр
0h		Нет ошибки
	1h	Ошибка командного кода
	2h	Неправильный адрес
	3h	Неправильные данные
	4h	Резерв
	5h	Резерв
	6h	Устройство плавного пуска занято
	7h	Резерв
5001h	8h	Резерв
	9h	Резерв
	10h	Резерв
	11h	Ошибка проверки
	12h	Ошибка изменения параметров
	13h	Система заблокирована
	14h	Ошибка контрольной суммы

Регистр настройки функциональных параметров 8000h – 8016h

Адрес регистра	Диапазон настройки	Параметр
8000h	1Eh46h	F0 - Установка напряжения
8001h	2h3Ch	F1 - Время плавного пуска
8002h	0h3Ch	F2 - Время плавного останова
8003h	0h3E7h	F3 - Интервал задержки запуска
8004h	0h3E7h	F4 - Задержка сигнала выходного реле
8005h	0h3E7h	F5 - Интервал задержки при перегреве
8006h	32h1F4h	F6 – Ограничение пускового тока
8007h	32hC8h	F7 – Максимальный рабочий ток УПП
8008h	0h3h	F8 - Выбор режима ввода данных
8009h	28h5Ah	F9 - Защита по падению напряжения
800Ah	64h8Ch	FA - Защита по превышению напряжения
800Bh	0h5h	Fb - Режим пуска
800Ch	0h4h	FC - Уровень защиты
800Dh	0h7h	Fd - Режим управления
800Eh	0hDh	FE - Автоматический перезапуск
800Fh	0h1h	FF - Разрешение на изменение параметра

8010h	0h3Fh	FH - Адрес устройства
8011h	0h5h	FJ - Скорость передачи данных
8012h	0h5h	FL - Формат данных
8013h	0h13h	FP - Функция выходного реле
8014h	20h64h	FU - Ограничение тока останова
8015h	Ном. ток эл.двигателя	Fo - Номинальный ток двигателя

Примечание:

- Коммуникация не будет осуществляться, если открыто меню регистров на панели устройства плавного пуска
- Можно читать не более 16 регистров подряд за один запрос чтения

Пример:

1. Настройка номинального тока электродвигателя 14А

Запрос от Master

Адрес	Код	Адрес регистра	Данные	CRC
01	06	8015	000E	300A

Ответ от Slave

Адрес	Код	Адрес регистра	Данные	CRC
01	06	8015	000E	300A

2. Настройка режима работы – рампа по току

Запрос от Master

Адрес	Код	Адрес регистра	Данные	CRC
01	06	800B	0004	D00B

Ответ от Slave

Адрес	Код	Адрес регистра	Данные	CRC
01	06	800B	0004	D00B

3. Мониторинг рабочего тока

Запрос от Master

Адрес	Код	Адрес регистра	Данные	CRC
01	03	3001	01	DACA

Ответ от Slave

Адрес	Код	Адрес регистра	Данные	CRC
01	03	0200	Значение рабочего тока	DACA

INSTART

INSTART

ПАСПОРТ УСТРОЙСТВО ПЛАВНОГО ПУСКА

1. Гарантийные обязательства

- 1.1 Изготовитель гарантирует соответствие изделия требованиям безопасности при условии соблюдения покупателем правил транспортировки, хранения, монтажа и эксплуатации.
- 1.2 Гарантия распространяется на все дефекты, возникшие по вине Изготовителя.
- 1.3 Гарантия не распространяется на дефекты, возникшие в случаях:
 - -нарушения паспортных режимов хранения, монтажа, ввода в эксплуатацию, эксплуатации и обслуживания изделия;
 - -ненадлежащей транспортировки и погрузо-разгрузочных работ;
 - -наличия следов воздействия веществ, агрессивных к материалам изделия;
 - -наличия повреждений, вызванных пожаром, стихией, форсмажорными обстоятельствами;
 - -повреждений, вызванных неправильными действиями покупателя;
 - -наличия следов постороннего вмешательства в конструкцию изделия.

2. Условия гарантийного обслуживания

- 2.1. Претензии к качеству изделия могут быть предъявлены в течение гарантийного срока.
- 2.2 Гарантийное изделие ремонтируется или обменивается на новое бесплатно. Решение о замене или ремонте изделия принимает сервисный центр. Замененное изделие или его части, полученные в результате ремонта, переходят в собственность сервисного центра.
- 2.3 Затраты, связанные с демонтажем/монтажом неисправного изделия, упущенная выгода покупателю не возмещаются.
- 2.4. В случае необоснованности претензии, затраты на диагностику и экспертизу изделия оплачиваются Покупателем.
- 2.5. Изделие принимается в гарантийный ремонт (а также при возврате) полностью укомплектованным.

Приобретая изделие и передавая его на диагностику для выявления природы дефектов в изделии, Покупатель выражает свое согласие с условиями гарантийного обслуживания, а также стоимостью диагностики (при непризнании заявленного события гарантийным случаем), текст которых размещен на официальном сайте производителя в информационно-телекоммуникационной сети «Интернет»: https://instart-info.ru/usloviya-i-stoimost-diagnostiki-oborudovaniya-instart/

Изготовитль: ООО «Инстарт», г. Санкт-Петербург пр. Большевиков, д.52 кор.9

Наименование изде	елия
Комплектность поставки:	
NOMINERTHOCIS NOCIABRI.	4

Устройство плавного пуска INSTART - 1 шт.

Руководство по эксплуатации, Паспорт - 1 шт.

Гарантийный срок – Два года (двадцать четыре месяца) с даты производства.

По вопросам рекламаций, претензий к качеству изделия, гарантийного ремонта обращаться в сервисный центр по адресу: 193315, г. Санкт-Петербург, проспект Большевиков, дом 52, корпус 9, тел. (812) 324-96-87, 8 800 222-00-21.

При предъявлении претензий к качеству изделия покупатель представляет следующие документы:

- 1. Акт рекламации (бланк размещен на следующем официальном сайте Изготовителя в информационно-телекоммуникационной сети «Интернет»: https://instart-info.ru/podderzhka/texnicheskayapodderzhka/, либо акт рекламации в произвольной форме, в котором покупателем указываются:
 - наименование организации или ФИО покупателя, фактический адрес и контактный телефон;
 - наименование и адрес организации, производившей монтаж;
 - электрическая схема и фотографии оборудования с установленным изделием;
 - основные настройки изделия;
 - краткое описание дефекта.
- 2. Документ, подтверждающий покупку изделия.
- 3. Акт пуско-наладки либо акт ввода оборудования с установленным изделием в эксплуатацию.
- 4. Настоящий Паспорт.

			i
OTK	М.П.	Дата производства	V
			\sim

